
IMPLEMENTATION ARCHITECTURE FOR IEEE STANDARD P1641 -
SIGNAL AND TEST DEFINITION USING IVI TECHNOLOGIES

Ion A. Neag
TYX Corporation

1910 Association Dr., Ste. 200
Reston, VA 20191

703-264-1080
ion@tyx.com

Matt Cornish
Racal Instruments Group Ltd

29-31 Cobham Road
Wimborne, UK

+44 (0)1202 872800
matt.cornish@racalinst.co.uk

Abstract - The implementation of the emerging
IEEE P1641 standard requires software
architectures that enable the development and
execution of instrument-independent TPSs.
The Signal Interface standard developed by
the IVI Foundation provides advanced
instrument interchangeability capabilities,
while using a signal-oriented instrument
model. These characteristics make it an
excellent choice for software solutions that
implement the new IEEE standard.

This paper describes a software architecture
that integrates multiple software products
through standard interfaces. The integration
relies on modern software technologies such
as XML and COM. The proposed software
solution offers unique and powerful features
for TPS development. In addition, its advanced
instrument interchangeability capabilities can
provide significant cost savings to
organizations that must maintain test
equipment over long periods of time

INTRODUCTION

The IEEE Standards Coordinating Committee on
Test and Diagnosis for Electronic Systems
(SCC20) has finalized the development of the
next release of the ATLAS standard, formally
known as the IEEE P1641 - Standard for Signal
and Test Definition [1]. This constitutes a radical
departure from previous ATLAS standards,
replacing the specialized language with a software
Application Programming Interface (API), while
preserving the principle of signal-based,
UUT-oriented test definition.

Implementations of IEEE P1641 must address a
set of architectural and algorithmic problems

similar to those of “traditional” ATLAS
implementations, including resource allocation,
switch path calculation and conversion of signal
and switching operations into instrument
commands. In addition, implementation architec-
tures must enable the replacement of instruments
with minimal changes in the code of the Test
Program Set (TPS).

Modern software technologies such as the
Component Object Model (COM) and the
Extensible Markup Language (XML) support the
development of effective solutions for the
problems identified before. The standards deve-
loped by the IVI Foundation use these technolo-
gies in support of instrument interchangeability [2].

This paper describes an implementation architec-
ture for IEEE P1641 using IVI technologies, which
builds on a solution originally described in [3]. The
proposed architecture integrates commercial
software from Racal Instruments and TYX
Corporation with a prototype Signal Object Library
developed by TYX. The conversion of signal and
switching operations into instrument commands is
achieved via IVI Signal Drivers.

STANDARDS

The architecture presented in this paper relies on
two emerging standards, described briefly in the
following sub-sections.

IEEE P1641 Standard for Signal and
Test Definition

IEEE P1641 [1] introduces a new way to define
signal types, which is more accurate and less
ambiguous than that of previous ATLAS
standards. The new standard defines a set of

Basic Signal Components (BSCs), which provide
the most basic signal, event and measurement
functions that might be required in a TPS. BSCs
such as Sine, Square, Sum, Clock, AM, RMS,
and FFT are included. The standard defines the
functional behavior of these BSCs through the
Signal Modeling Language (SML). SML allows
signal definitions to be unambiguously interpreted
for the purpose of TPS execution, resource
allocation, signal synthesis, simulation, etc. To
create more complex signals, BSCs can be
interconnected through links, attached to the BSC
terminals In, Carrier, Gate, etc.

P1641 contains a Test Signal Framework (TSF) to
describe reusable collections of BSCs which form
a distinct functional block. TSFs are a convenient
way to encapsulate the behavior of “traditional”
ATLAS nouns. In fact, many examples in IEEE
P1641 are based on these nouns.

IEEE P1641 includes Interface Definition
language (IDL) and XML mappings for signal
definitions, allowing these definitions to be used
from a wide variety of programming languages
and test environments. This capability, coupled
with the signal-oriented nature of BSCs, makes
the IEEE P1641 standard truly implementa-
tion-independent.

IVI Signal Interface

The IVI Signal Interface specification, currently in
its final development stage within the IVI
Foundation, defines a set of interfaces that enable
the signal-oriented control of instruments [4] [5]
[6]. By using a signal-oriented instrument model,
the IVI Signal Interface design offers advanced
instrument interchangeability features, such as:
replacement with an instrument from a different
class, or with an instrument that does not belong
to an IVI class, or with a combination of
instruments with similar capabilities. IVI Signal
Drivers make available to their client applications
a signal-oriented description of instrument
capabilities, in terms of range, resolution and
precision.

IVI Signal Drivers expose signal-oriented methods
such as: Reset, Setup, Initiate, Fetch, Connect,
etc. The implementation of these methods
converts the signal and switching operations into
instrument commands or instrument driver calls.
This functionality, along with the advanced
instrument interchangeability features, make IVI

Signal Drivers an excellent solution for test
environments based on the IEEE P1641 standard.

SOFTWARE PRODUCTS

The solution presented in this paper integrates
three distinct software products, described briefly
in the following sub-sections.

Racal Instruments newWave

Racal Instruments newWave [7] encapsulates

IEEE P1641 in a graphically based signal and
measurement development and modeling tool. In

addition, newWave provides on-the-fly, bi-direc-

tional editing and translation between its graphical
format and XML or Visual Basic (as supported by
the IDL mappings of IEEE P1641).

newWave incorporates a set of Streaming Filters
utilizing Microsoft's DirectX

®
 technology. These

filters, derived from the SML of IEEE P1641, use
XML signal definitions to provide live simulation of
signal models. Because the Streaming Filters are
encapsulated as ActiveX

®
 components, they can

be deployed as part of a third-party application.

Microsoft's OLE document interface, described in
detail in a following section of the paper, is also

supported, enabling newWave to be embedded in
its entirety into a third-party application.

TYX TestBase

TestBase is a Commercial Off-The-Shelf (COTS)
test executive that enables the visual develop-
ment and run-time execution of “fault tree” test
strategies [8].

The architecture of TestBase enables system in-
tegrators to customize and extend the functionality
of the product. This capability includes the
extension of the data type set, via plug-in COM
components called “Custom Data Type (CDT)
Editors” [9]. CDT Editors typically implement three
interfaces:
1. “Edit” graphical interface: displayed during

development, enables the assignment of CDT
values to parameters

2. Programmatic interface: allows test procedure
code and report macros to access the CDT
values

3. “Display” graphical interface: can be embed-
ded as an ActiveX

®
 control in soft front panels

of test procedures and in reports to display
graphical representations of CDT values

TYX Signal Object Library

The Signal Object Library (SOL) enables the
development of signal-based, UUT-oriented test
procedures using general-purpose programming
languages such as C++ and Visual Basic. The
SOL consists of two main parts:
1. A library of COM components, implementing

the signal types defined in the IEEE P1641
TSF. Instances of these components can be
used in the test procedure code to perform
signal operations. The component interfaces
contain properties corresponding to signal
parameters (equivalent to the ATLAS nouns),
as well as methods such as Reset, Setup and
Measure, similar to the ATLAS verbs.

2. A run-time engine, supporting the execution of
test procedures through automatic resource
allocation and switch path calculation
services. The run-time engine uses IVI Signal
Drivers for converting signal operations into
instrument and switch commands.

INTEGRATION ARCHITECTURE

The software architecture of the integrated

solution is shown in Figure 1. newWave is
integrated with the TestBase Integrated
Development Environment (IDE) via a CDT
Editor component, which uses the OLE document

interface exposed by newWave. This enables the
storage in the TestBase Database of complete
signal definitions, including the XML
representation of signal parameters, as well as

the signal diagrams displayed by newWave.

The TestBase Controller executes the test
strategies developed with the IDE by triggering
the execution of external Test Procedures.
These Test Procedures receive signal definitions
embedded in their input parameters. The above
CDT Editor is used again, this time via its
programmatic interface, to extract from the
parameters the signal definitions in XML format.
The Test Procedure code requests from the
Run-Time Engine the allocation of signals,
passing as requirements the XML signal
definitions.

Test

Procedures

IVI Signal

Drivers

TestBase

Controller

Test

Procedures

TestBase

IDE

CDT Editor

TYX TestBase

Data storage component

Application component

Racal newWave

newWave

Third-party

IDE

Run-Time

Engine

Component

Library

IVI Signal

Drivers

Third-party component

TYX Signal Object Library

Test

Results

IVI Config

Store

IVI

Configuration

Server

CDT Editor

TestBase

Database

IVI Signal

Drivers
Instruments

Figure 1. Software Architecture

The Run-Time Engine compares these
requirements against the capabilities of the
available instruments, capabilities provided by
the IVI Signal Drivers. When a match is found,
the Run-Time Engine instantiates a Component
Library object for the requested signal type,
connects it to the appropriate Signal object from
the IVI Signal Driver [4], then returns to the Test
Procedure a reference to the newly created
object.

The Test Procedure code uses the above
reference to invoke various signal-oriented
methods exposed by Component Library object.
For example, to configure a source signal the
code can call the Setup method, passing as
argument the XML signal definition received in
an input parameter. When receiving such
method calls, the Component Library object
invokes the corresponding method or methods
from the IVI Signal Driver, which in turn performs
the appropriate instrument control actions.

OLE Document Interface

The integration between newWave and the

TestBase CDT Editor is greatly facilitated by the

OLE document interface exposed by newWave.

OLE document interfaces are used for
embedding a document within another
document, for example a Microsoft Excel
spreadsheet within a Microsoft Word document.
Through this technology, the capabilities of
multiple software products can be seamlessly
integrated into a single application. An
embedded document can carry out certain
actions, such as exchanging its menu for the
host application's menu and serializing its
document data, to be combined with the host
application's own data.

This technology enables the TestBase CDT
Editor to edit IEEE P1641 signal diagrams

seamlessly by embedding a newWave docu-

ment. newWave presents all the required editing

facilities and passes the changes back to the
CDT Editor, which in turn transfers them to the
TestBase IDE, for persistent storage.

XML Signal Definition Format

The modules of the integrated software
architecture represented in Figure 1 use various
XML-based formats for exchanging and storing

information. This paper focuses on the XML
signal definition format specified by the IEEE
P1641 standard. As mentioned before, the IEEE
standard contains mappings of BSC and TSF
signal definitions to XML. These mappings also
include the physical types of signal parameters,
such as Voltage, Acceleration, Time, etc.
These mappings enable any IEEE P1641 signal
definition to be exchanged in an easy-to-parse,
human-readable format.

In the proposed solution, the above format is
used for exchanging signal definitions between

newWave, TestBase, the test procedure code
and the SOL components.

PROTOTYPE IMPLEMENTATION

This section describes the operation of the
prototype implementation for a typical TPS
development and execution scenario. Figure 2
shows the experimental system used to verify
the operation of the prototype.

Function

Generator

PC Sound

Card

Switching

Matrix
R

e
c
e
iv

e
r UUT

F
ix

tu
re

System

Controller

IEEE-488USB

IN

IN OUT
OUT

OUT

Figure 2. Experimental System

The experimental system includes a “traditional”
Function Generator and an external PC Sound
Card controlled via USB and acting as a
synthetic instrument. The Unit Under Test (UUT)
is a passive circuit containing a voltage limiter
and a low-pass filter.

Visual Definition of Signals

IEEE P1641 signals can be assigned to input
parameters of TestBase test procedures. To edit
the value of such a parameter for a particular
test procedure call, the TestBase IDE user
opens the CDT Editor, which in turn displays the

newWave user interface shown in Figure 3. This

interface is used for the visual definition of
signals through IEEE P1641 diagrams.

Note: Figure 3 exemplifies the definition of a
signal using multiple BSCs. Alternatively, signals
can be defined using a single TSF component,
for example “AM_SIGNAL” [1].

Figure 3. Definition of a P1641 Signal with

newWave

After the signal design is completed, newWave

converts the graphical signal definition into an
XML representation, exemplified in Figure 4,
which it returns to TestBase.

Figure 4. XML Signal Definition Generated by

newWave

Signal Simulation

The waveform of the previously defined signal
can be displayed live, using the Streaming

Filters built into newWave, as shown in Figure 5
[10]. This capability enables test developers to
adjust signal parameters until the desired signal
waveform is obtained.

Figure 5. Live Signal Simulation with newWave

Test Execution

For demonstration purposes, the authors have
developed a simple Visual Basic test procedure,
which applies a signal to the input pins of the
UUT shown in Figure 2 and measures the
response at the output pins, then displays the
stimulus and response waveforms.

The source code fragment that allocates,
configures and connects the input signal is
shown in Figure 6. This code shows how the
SOL enables the development of signal-based,
UUT-oriented test procedures with a gene-
ral-purpose programming language.

Figure 6. Test Procedure Code

The object “rc” is a previously created instance

of the SOL Run-Time Engine. The string stored

in “m_strXML” is the XML signal definition

received in an input parameter of the test
procedure. This string is passed to the

' allocate stimulus signal

Dim inputSignal As Object

Set inputSignal = rc.GetSignalXML(_

 Source, m_strXML)

' setup stimulus signal

inputSignal.SetupXML m_strXML

' connect stimulus

inputSignal.Connect ″IN_HI″, ″IN_LO″

Run-Time Engine as requirements for the signal

allocation algorithm, then to the “inputSignal”

object as signal settings.

A call to the above test procedure, with an AM
Signal as input parameter, was included in a
TestBase test strategy. Figure 7 shows the soft
front panel of the test procedure, as displayed
during the execution of the test strategy.

Figure 7. Test Procedure Soft Front Panel

Instrument Interchangeability

The execution described before was performed
using the Function Generator as source for AC
and AM signals and the PC Sound Card as
waveform sensor (see Figure 2). Each of these
instruments is controlled by an IVI Signal Driver,
which supports the signal types and signal roles
indicated above.

To demonstrate the interchangeability capabili-
ties of the proposed solution, the authors have
extended the functionality of the IVI Signal
Driver for the PC Sound Card, adding
capabilities for generating AC and AM signals.
The system was then reconfigured by removing
the entry for the Function Generator from the IVI
Config Store (see Figure 1). At this point, the
Function Generator can be physically removed
from the system. As a result, the SOL Run-Time
System will allocate the stimulus capabilities of

the PC Sound Card, instead of the similar
capabilities of the Function Generator. During
execution in the new system configuration, the
waveforms displayed in the soft front panel look
identical to those from Figure 7 (within the
accuracy performance of the two instruments). It
is important to note that the Function Generator
was replaced without changing the test
procedure code or the test strategy design.

EXTENSION CAPABILITIES

The prototype implementation presented in this
paper can be extended as described in the
following sub-sections.

Signal Synthesis

For simplicity, the signal generation capabilities
of the IVI Signal Driver for the PC Sound Card
are implemented in the prototype by calculating
the waveform samples and transmitting them to
the Sound Card through the Windows
Multimedia API.

As described before, newWave includes a set of
Streaming Filters, which take as input XML
signal definitions and can communicate with the
Sound Card. This is achieved using the same
streaming technology that enables simulation. In
this case, however, the signal stream is directed
at the DirectX

®
 driver of the PC Sound Card

[10]. Future implementations of the IVI Signal
Driver will use these Streaming Filters to support
a larger set of signal types.

It is important to note that this synthesis
technique is not limited to PC multimedia
peripherals, since DirectX

®
 drivers might be

written to drive synthetic test instrument [10].

Instrument Capability Description

As previously suggested in [11], the capabilities
of instruments can be described in terms of the
BSCs that they are able to support. For
example, a simple RF synthesizer might support
Sinusoid, Triangle and Square sources, along
with AM, FM and Sum conditioners.

The architecture described in this paper can use
such an approach to support the automatic
resource allocation functionality of the Run-Time
Engine (see Figure 1). In the prototype
implementation, the resource allocation

algorithm uses TSF-level capability descriptions
provided by the IVI Signal Drivers and either
TSF-level or BSC-level requirements provided
by the test procedure. Using BSC-level
capability descriptions would improve the ability
of the algorithm to match requirements
expressed at the BSC level. In addition, BSC-
level capability descriptions are better suited for
describing synthetic instrumentation.

ATML Support

The Automatic Test Markup language (ATML)
Working Group [12] is currently developing a set
of standard formats based on XML, which will
facilitate the exchange of TPS and Automatic
Test Equipment (ATE) data between software
applications. The authors have proposed the
incorporation of the XML signal definition format
specified by IEEE P1641 in the ATML schemas.

The open architecture of the software products
included in the proposed solution enables them
to support for other ATML schemas such as
Test Program, Diagnostics, Test Results and
Instrument Specifications.

CONCLUSION

The solution described in this paper offers
several benefits to TPS developers and to
organizations that must maintain TPSs over long
periods of time:
1. The ability to define signals visually and to

verify the waveforms of these signals
through simulation.

2. The ability to transmit signals as input
parameters to test procedures, along with
other parametric data.

3. The ability to develop signal-based,
UUT-oriented test procedures with
general-purpose programming languages.

4. The ability to port TPSs across various
run-time implementations.

5. The ability to replace instruments or to
perform a full re-host with minimal changes
in the TPS code; this capability
encompasses both traditional and synthetic
instruments.

These benefits are made possible by integrating
multiple software products through software
interfaces that adhere to industry standards. In
particular, the solution described in this paper
uses XML signal descriptions specified by IEEE

P1641, IVI Signal Interfaces, OLE document
interfaces and ActiveX

®
 interfaces.

REFERENCES

[1] *** IEEE P1641/D1, Draft Standard for Signal
and Test Definition, IEEE, October 2003

[2] *** IVI Foundation web site,
http://www.ivifoundation.org

[3] Ramachandran, N., Oblad, R.P., Neag, I.A.,
Tyler, D.F., “The Role of the IVI Signal Interface
Standard in Supporting Instrument
Interchangeability”, Proc. AUTOTESTCON,
Anaheim, CA, 2000

[4] *** IVI-3.12: DRAFT IviSig Class
Specification, Revision 0.2, IVI Foundation,
January 2003, http://www.ivifoundation.org/
groups/Signal-Interfaces/default.htm

[5] Neag, I.A., Ramachandran, N, “ATLAS2K
and the IVI Signal Interface - the Framework for
an Open, Modular and Distributed ATS
Architecture”, Proc. AUTOTESTCON, Valley
Forge, PA, 2001, pp. 23 - 37

[6] Gal, S., Neag, I.A., “A Unified Interface for
Signal-Oriented Control of Instruments and
Switches”, Proc. AUTOTESTCON, Huntsville,
AL, 2002

[7] *** newWave, http://www.racalinst.com/
newwave/newWave.htm

[8] *** TestBase, http://www.tyx.com/testbase/

[9] Neag, I.A., Gal, S., Hartop, D., “Data Type
Extensibility in Automatic Test Systems”, Proc.
AUTOTESTCON, Huntsville, AL, 2002

 [10] Cornish, M., Hazlewood, R., Gorringe, C.,
“PC Based, IEEE Signal & Test Description
Standard”, Proc. AUTOTESTCON, Anaheim,
CA, 2003

[11] Cornish, M., Gorringe, C., Langlois, J.,
“Synthesis of Complex Signals on Test
Equipment”, Proc. AUTOTESTCON, Huntsville,
AL, 2002

[12] *** Automatic Test Markup Language web
site, http://www.atml.org/

http://www.ivifoundation.org/
http://www.ivifoundation.org/%20groups/Signal-Interfaces/default.htm
http://www.ivifoundation.org/%20groups/Signal-Interfaces/default.htm
http://www.racalinst.com/
http://www.tyx.com/testbase/
http://www.atml.org/

