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ABSTRACT 
 

This paper investigates the combined use of ATLAS2K and the IVI Signal 

Interface in ATS architectures. The analysis of these initiatives identifies a set of 

common features and demonstrates that they address complementary areas of 

ATS architectures. This situation makes them an excellent fit for establishing the 

foundation of a modular, open, distributed and coherent COM-based ATS 

architecture. 
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1 INTRODUCTION 

 

The analysis of software technologies used in PC-based Automatic Test Systems (ATSs) 

demonstrates a gradual evolution from the procedural programming paradigm, relying on C-type 

languages and Windows Dynamic Link Library (DLL) technology, to the object-oriented 

paradigm that builds on object-oriented languages and the Component Object Model (COM) 

technology. This trend is visible, for example, in the work of the IVI Foundation [1], where C 

interfaces for instrument drivers, targeted towards the current user base, are complemented by 

COM interfaces, supporting the development of new projects in object-oriented environments 

[2]. 

 

An essential feature of the object-oriented paradigm is its ability to support the implementation 

of computer-based solutions for very complex problems. Consequently, object and component 

libraries have emerged as modern alternatives in application fields where domain-specific 

languages were previously the preferred approach. Such libraries may be used in conjunction 

with general-purpose programming languages, which are supported by high-quality development 

tools and offer better availability of programming expertise than specialized languages. IVI 

Drivers [3] provide an excellent example for the above trend, since their functionality and 

benefits (i.e., perform instrument control while supporting instrument interchangeability) are 

very similar to those of the SCPI language. 
 

The ATLAS2K standard [4] defines a COM library oriented towards signal-based testing. Thus, 

it is a perfect illustration of both trends described above. 
 

Recognizing that IVI drivers alone do not provide complete interchangeability for instruments, 

the IVI Foundation develops the IVI Measurement and Stimulus Subsystems (IVI-MSS) standard 
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[5], which defines an enhanced architecture where additional layers of COM components 

compensate for differences in instrument behavior and support the aggregation of multiple 

instruments [6] [7]. 
 

A recent initiative in the IVI Foundation, the IVI Signal Interface [8], aims to support the 

signal-oriented control of instruments while providing a high degree of instrument 

interchangeability [9] [10]. This goal may be achieved by standardizing a set of interfaces for 

IVI-MSS components, interfaces that support signal-oriented operations such as Reset, Setup and 

Fetch. 
 

2 ATLAS2K 

 

2.1 Overview 
 

ATLAS2K is a new standard under development by the Test Description (TD) Sub-Committee 

of the IEEE Standards Coordinating Committee 20 on Test and Diagnosis for Electronic Systems 

(SCC20) [11]. 

 

This standard represents a significant departure from previous ATLAS specifications, which 

define a high-order test requirement-oriented language. Instead, ATLAS2K defines a set of COM 

components that model signals, as well as a way to interconnect these components in order to 

specify test requirements. The above components may be used from “carrier languages” that 

satisfy a set of minimal requirements defined in the standard [11], with C++, Visual Basic and 

Java being among candidates.  

 

The definition of ATLAS2K components includes the specification of syntax, through an 

Interface Definition Language (IDL), and of semantics, using the Signal and Method Modeling 

Language (SMML) [12]. 

 

Extensibility, a weak point of previous ATLAS specifications, is addressed in the new standard 

by defining a set of primitive signals (“ATLAS2K Basic Components”) and supporting the 

definition of new signals through composition operations [11]. Compatibility with previous 

ATLAS standards is supported in ATLAS2K by defining a component library implementing 

signals that correspond to ATLAS NOUNs defined by previous standards [13]. 

 

2.2 ATLAS2K Signal Components 
 

2.2.1 Base Classes 
 

ATLAS2K defines a set of base classes that model: 

 signal roles:  

o Source 

o Sensor 

o Signal Conditioner (implementing signal transformation and combination) 

o Event Conditioners: time-based event, event-based event, signal-based event 



 

In Signal
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Out Signal

Sync Event

Attributes
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Figure 1. SignalFunction Class 

 Unit Under Test (UUT) pins 

 values of physical quantities  
 

The fundamental base class, named SignalFunction, models a generic signal role. A symbolic 

representation of this class is shown in Figure 1. 

The default interface of the SignalFunction class contains the following properties: 

 In: reference to a Signal interface belonging to another object 

 Sync: reference to an Event interface belonging to another object 

 Out: reference to a Signal interface belonging to the current object; a reference to the Out 

interface may be assigned to an In or Sync property of another object (see Figure 2 below 

for an example) 

 Attributes: model the controllable parameters of the signal, such as the amplitude and 

frequency of a sinusoidal voltage 

 Value: models the value of the measurement; exists only for the “sensor” role 
 

Signal and Event are specializations of a base interface named SignalFlow, which contains the 

following elements: 

 properties:  

o State: returns the current state of the object; the following states are defined: 

“Stopped”; “Paused” and “Running”; the current state is changed by the methods 

specified below and possibly by events the object receives 

 methods: 

o Stop  

o Run  

o Change 
 

The SignalFunction class provides SignalEvent callback interfaces, which support the 

transmission of events indicating state changes. Such events may be received from objects 

connected at In and Sync inputs and may be sent to objects connected to the Out output. For 
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Figure 2. Modeling a Composite Signal 

instance, a Ready event indicates that signal state has changed from “Stopped” to “Paused”, 

while an Active event signals a state change from “Paused” to “Running”. 
 

The semantics of SignalFlow methods are signal role-specific; for example, the following 

actions are performed by the Run method of a source signal object: 

 call Run on all input signals 

 acquire resources 

 prepare signal for generation 

 generate a Ready event 

 enter “Paused” state 

 if the signal is not externally synchronized, also perform the following tasks: 

o activate the physical signal 

o generate an Active event  

o enter “Running” state 

 

Actions are also triggered by events received from objects connected to In and Sync inputs. For 

example, an Active event received from the Sync input is used for external synchronization. For a 

sensor signal in “Paused” state, it triggers a measurement operation. 

 

Composite signals may be modeled by interconnecting multiple SignalFunction objects through 

their interfaces. For example, the generation of an AM signal by combining two sinusoidal 

signals is modeled by the object structure represented in Figure 2.  

 

The operation of multiple objects is synchronized through automatic method calls and events. 

For example, when a client application calls the Run method of the AmMod object, this object 



 

calls the same method on Modulation and Carrier. When the state of the Carrier object 

changes (for example due to hardware triggering), it informs the AmMod object by sending an 

event. 

 

Specializations of the SignalFunction class are defined for particular signal roles such as source, 

sensor, different types of event conditioners, etc. These derived classes have slightly different 

interfaces (for example, the Source class does not have an In property). 
 

2.2.2 Basic Components 
 

The ATLAS2K Basic Components are further specializations of the role-specific classes 

described above. For example, the SinusoidVoltage component, which models a sinusoidal 

voltage, is a specialization of Source. In addition to the properties of Source, the default 

interface of SinusoidVoltage contains the following properties that model signal parameters: 

 Amp, of type <Voltage> 

 Freq, of type <Frequency> 

 Phase_angle, of type <PlaneAngle> 

 

ATLAS2K defines such basic components for the following types of signals: 

 source signals: 

o non-periodic: constant, single ramp, step, stepped pulse train, trapezoid, 

trapezoidal pulse train, exponential, damped sinusoid, random, noise 

o periodic: square wave, periodic pulse train, ramp, triangular, trapezoidal, periodic 

trapezoidal train, sinusoid, arbitrary waveform 

 sensor signals: instantaneous, peak-to-peak, RMS, average, sampling, time interval 

 signal conditioners: delay, sum, product, inverse, exponential, filters, Fourier transform, 

etc. 

 parallel digital signals 

 serial data buses: RS, ARINC 429 and 629, MIL-STD-1553B, CSDB 

 

2.2.3 TTF Components 
 

Complex signals may be described using basic signals and the signal composition methodology 

previously described. Such complex signals are grouped in libraries named “Test Technology 

Frameworks” (TTFs). TTF components may be defined using ATLAS2K Basic Components, as 

well as components from other TTFs.  

 

Domain-specific TTFs are expected to be developed for applications such as RF testing, video 

testing, etc.  

 

In addition, the ATLAS2K standard will include a TTF that describes signals defined in IEEE 

Std. 716 (C/ATLAS) in terms of ATLAS2K models. This approach is intended to provide 

backwards compatibility for existing ATLAS Test Program Sets (TPSs). 

 



 

2.3 Examples 
 

The following Visual Basic code exemplifies typical sequences of signal operations [1]. The 

equivalent ATLAS statements are provided as comments. 

 

2.3.1 Signal Generation 
 

The following code applies a sinusoidal voltage with an amplitude of 0.5 V and a frequency of 

1 MHz to UUT pins “PL1-1” and “PL1-2”. 
 

‘ SETUP SinusoidalVoltage Amp 0.5V, Freq 10MHz AS mySig 

Dim mySig As Source 

Set mySig = A2k.Require(”SinusoidalVoltage”) 

mySig.Amp.Units = V 

mySig.Amp = 0.5 

mySig.Freq = ”1MHz”  ’alternative string format 

 

‘ CONNECT mySig CNX HI ”PL1-1” LO ”PL1-2” 

Set cnx = A2k.Require(”TwoWire”) 

cnx.HI = ”PL1-1” 

cnx.LO = ”PL1-2” 

Set cnx.in = MySig.out 

Set cnx = Nothing 

mySig.out.Run  ’generate physical signal 

 

‘ DISCONNECT mySig 

mySig.out.Stop  ’stop signal generation 

mySig.in = Nothing 

mySig = Nothing 

 

2.3.2 Signal Measurement 
 

The following code measures the RMS amplitude of an AC voltage with a nominal amplitude of 

0.5 V at UUT pins “PL1-1” and “PL1-2”. 

 
‘ SETUP RMSVoltage Nominal 0.5V AS mySig 

Dim mySig As MeasurementFunction 

Set mySig = A2k.Require(”RMSVoltage”) 

mySig.Nominal.Units = V 

mySig.Nominal = 0.5 

 

‘ CONNECT (mySig) CNX HI ”PL1-1” LO ”PL1-2” 

Set cnx = A2k.Require(”TwoWire”) 

cnx.HI = ”PL1-1” 

cnx.LO = ”PL1-2” 

Set mySig.in = cnx.out 

Set cnx = Nothing 



 

 

‘ ARM (mySig) 

mySig.out.Run  ’perform measurement  

 

‘ FETCH (mySig) INTO rmsValue 

rmsValue = mySig.Value 

 

‘ DISCONNECT (mySig) 

Set disconnect = mySig.in 

disconnect.out.Stop 

Set disconnect = Nothing 

Set mySig.in = Nothing 

 

2.4 Implementation Issues 
 

ATLAS2K components with identical interfaces may be required to implement different 

functionality on different systems. The draft of the ATLAS2K standard mentions components 

operating differently in design, simulation and run-time modes. Besides these situations, 

ATLAS2K components should be able to use different instruments or different combinations of 

instruments, in order to perform identical signal generation and measurement tasks on different 

Automatic Test Equipment (ATE) setups. The above requirements are not directly addressed by 

the standard, being considered implementation issues [3]. 

 

In order to preserve TPS portability, changing instruments or the operational mode of the 

ATLAS2K components should not involve changes in the TPS code. Consequently, the ATS 

architecture must support the mapping of signal objects used in the TPS to different objects 

implementing instrument control (or simulation). 

 

The above requirement has a very important consequence: to support instrument interchangea-

bility, ATLAS2K-based ATS architectures should contain two component layers. The first layer 

includes the components defined by ATLAS2K, directly interconnected in the TPS code. Their 

implementation delegates functionality to components on the second layer, which perform the 

actual control of instruments (or implement simulation). Because the components on the second 

layer are instrument-specific, their mapping to components from the first layer is actually a 

resource allocation function. 

 

Note: A very similar situation occurs for IVI drivers. To support instrument interchangeability, 

test programs must use generic “class drivers”, which delegate functionality to “specific drivers”. 

These components are instrument-specific and perform the actual control of instruments. The 

above mapping is manually specified by the user and recorded in the “IVI Configuration Store” 

[4]. 

 

Note: Another critical implementation issue for ATLAS2K is switching, i.e., the automatic 

control of the switching system in order to close the appropriate signal paths from instrument 

ports to UUT pins. Because switching is not directly related to the IVI Signal Interface, it will 

not be discussed in the present paper. 

 



 

3 THE IVI SIGNAL INTERFACE 

 

3.1 Overview 
 

The IVI Signal Interface proposal [9] [10] envisions the standardization of interfaces for a set of 

COM components performing signal-oriented instrument control.  

 

The use of the signal abstraction provides a high degree of instrument interchangeability, while 

the standardization of interfaces would support the portability of components between test 

environments from different vendors. 

 

3.2 Architecture 
 

The architecture proposed for the IVI Signal Interface standard is shown in Figure 3.  

 

The IVI Signal Component is an IVI-MSS role component with a standardized application 

interface (the IVI Signal Interface). This interface contains methods that implement a set of 

basic signal operations such as Reset, Setup, Change, Fetch, etc. It allows the client application 

to control the generation and/or measurement of a physical signal that may belong to one or more 

signal types (e.g., DC current, AC voltage, etc.).  
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Figure 3. IVI Signal Interface Architecture 



 

An IVI Signal Component controls one or more instruments that perform the generation or 

measurement of the physical signal. Instrument control may be implemented through IVI 

Drivers, VXIplug&play drivers, SCPI commands or some other mechanism. IVI Signal 

Components use services provided by IVI Common Components such as IVI Factory, IVI 

Configuration Store and IVI Event Server. This allows them to operate consistently and interact 

with other IVI components such as IVI Drivers and IVI-MSS Servers. 

 

IVI Signal Components provide programmatic access to Resource Information, a data module 

that describes the signal generation and measurement capabilities of the component, including 

the following information: 

 supported signal types 

 for each signal type, the supported signal parameters  

 for each signal parameter, the range, resolution and precision that may be achieved in 

generation or measurement 

 connectivity of signal ports to instrument ports 
The above information supports the automatic allocation of resources in signal-based ATSs. 

 

IVI Signal Components may be used in different types of ATS architectures, as follows: 

In signal-based ATSs, along with a general-purpose language and a component library (such as 

those defined in ATLAS2K). This architecture is described in detail in Section 4. 

 

In signal-based ATSs, along with the ATLAS language. In this approach, the object code 

generated by an ATLAS compiler may contain calls to IVI Signal Components, which 

implement the actual control of instruments. 

 

In instrument-based ATSs, along with a general-purpose language. Although such a solution 

does not implement automatic resource allocation or automatic switching, it can still benefit from 

the higher level of abstraction provided by the IVI Signal Interface. For example, test programs 

that use IVI Signal Components would feature a higher degree of instrument interchangeability 

compared to VXIplug&play drivers or IVI drivers, supporting the replacement of an obsolete 

instrument with an instrument from a different class or even with multiple instruments that 

operate together to generate or measure a given signal.  

 

3.3 Standardization of Signal Type Information 
 

In the approach proposed in [10], the IVI Signal Interface allows the transmission of signal 

information (such as signal type and signal parameters) in a generic, signal-type independent 

format (see Section 3.4 for examples). Thus, an IVI Signal Interface standard would specify the 

semantics of the information channel that links IVI Signal Components to their clients. For 

example, the standard may define a Setup method that takes as arguments: 

 the role of the signal (e.g., source, sensor or load) 

 the type of the signal (e.g., AC Signal) 

 a collection of objects of type Parameter, where each Parameter has the properties Name 

and Value (e.g., Amplitude, 1.0 V). 

 



 

Specifying the semantics of the information transferred through the channel implies the 

standardization of signal type information, including the following elements: 

 a set of signal types and their correspondence to physical signals 

 for each signal type, the set of signal parameters and their correspondence to the 

parameters of the physical signal 

 

The standardization of signal type information is critical for instrument interchangeability, since 

it guarantees the consistent use of such information by IVI Signal Components from different 

vendors, as well as their client applications. It is the authors’ opinion that the IVI Signal Interface 

standard should not specify its own signal types, but rather reference such information in an 

existing standard. The following arguments support this approach: 

 signal types are already defined in existing ATLAS specifications; their adaptation for an 

interface standard is for the most part a mechanical process 

 new signal types are being defined in the ATLAS2K initiative; compared to previous 

ATLAS specifications, the new definitions will have a precise formal definition  

 being focused on defining interfaces for instrument control, the IVI Foundation is not the 

proper place to trigger another effort for defining signal types 

 

3.4 Examples 
 

The following Visual Basic code exemplifies the use of IVI Signal Components to implement 

typical sequences of signal operations.  

 

Note: The sample code below would appear as shown only in instrument-based TPSs. In 

signal-based systems, the operations would be implemented in a component library such as 

ATLAS2K or in the object code generated by an ATLAS compiler (see Section 3.2). 

 

3.4.1 Signal Generation 
 

The following code generates a sinusoidal voltage with an amplitude of 0.5 V and a frequency of 

1 MHz with 1.0 Hz resolution, using the instrument with GPIB address 1. 

 
‘ initalize 

Dim mySigSource as IviSignalSource  

mySigSource.Init(”GPIB:1:INSTR”) 

 

‘ set signal parameters and start generation 

Dim control As ParamValSet 

control.Add(”Amp”, 0.5)  ‘name and value 

control.Add(”Freq”, 1.0E6, 1.0)  ‘name, value and resolution  

mySigSource.Setup(SENSOR, ”AcSignal”, control)  

‘signal role, signal type and parameters 

 

3.4.2 Signal Measurement 
The following code measures the RMS amplitude of an AC voltage with a nominal amplitude of 

0.5 V, using the instrument with GPIB address 2. 



 

 
‘ initalize 

Dim mySigSensor as IviSignalSensor  

mySigSensor.Init(”GPIB:2:INSTR”) 

 

‘ set signal parameters  

Dim capability As ParamValSet 

capability.Add(”Amp”, 0.5) 

mySigSensor.Setup(SENSOR, ”AcSignal”, capability) 

 

‘ start measurement 

Dim measList As ParamSet 

measList.Add(”RmsAmp”) 

mySigSensor.Arm(measList) 

 

‘ retrieve value 

Dim measurements As ParamValSet 

measurements = mySigSensor.Fetch() 

Dim rmsValue as Double 

rmsValue = measurements.GetValue(”RmsAmp”); 

 

4 COMBINING ATLAS2K AND THE IVI SIGNAL INTERFACE IN AN ATS 
ARCHITECTURE 

 

4.1 Principle 
 

As shown before, ATLAS2K and the proposed IVI Signal Interface standard address 

complementary areas of ATS architectures, as follows: 

 ATLAS2K components: 

o are designed for direct use in signal-based TPS code 

o as shown in Section 2.4, should not implement instrument control directly; 

instead, they should delegate functionality to another layer of components 

o the ATLAS2K standard defines signal types 

 IVI Signal Components  

o not intended for direct use in signal-based TPS code 

o implement instrument control 

o in authors’ oppinion, an IVI Signal Interface standard should not define signal 

type information but rather reference such information in other standards 

 

Consequently, the IVI Signal Interface may provide an implementation mechanism for 

ATLAS2K, while ATLAS2K defines the signal type information required by an IVI Signal 

Interface standard. 

 

On the other hand, because both standards specify interfaces for COM components, they may 

define the framework of a coherent COM-based ATS architecture, which may include other 

COM standards under development, namely IVI-COM Drivers [4] and COM VISA [14].  



 

 

4.2 Example 
A signal-based ATS architecture that uses ATLAS2K and IVI Signal Components is shown in 

Figure 4.  

 

The Device Information module provides a description of capabilities for all the instruments 

available on the system. For example, this module may be a file generated by the ATLAS2K 

development environment. When a new instrument is installed on the system, the Resource 

Information provided by the IVI Signal Component (see Figure 3) is included in the Device 

Information file. The Switch Information module describes the connectivity of the Switching 

Subsystem, while the Fixture Information module describes the connectivity of the Fixture. 

The ATLAS2K TPS code requests each signal object from the Run-Time System. This component 

compares the requirements specified for the signal with the capabilities of the instruments 

available on the system, in terms of supported signal type and parameters, as well as range, 

resolution and precision of these parameters. If an instrument with sufficient capabilities is 

found, the Run-Time System uses data from the Switch Information and Fixture Information 
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Figure 4. ATS Architecture Using ATLAS2K and IVI Components 



 

modules to verify if signal paths can be closed from Instrument ports to the appropriate UUT 

pins. If this condition is also fulfilled, the Run-Time System instantiates the IVI Signal 

Component corresponding to the allocated instrument, instantiates the ATLAS2K Component 

for the required signal, initializes the ATLAS2K Component by passing it a reference to the 

IVI Signal Component, then returns to the ATLAS2K TPS code a reference to the ATLAS2K 

Component. 

The ATLAS2K TPS code sets properties and invokes methods of the ATLAS2K Component. 

This component calls the appropriate methods of the IVI Signal Component, which performs 

the actual control of the instrument, possibly using an IVI-COM Driver. During TPS operation 

the Run-Time System performs automatic switching by closing and opening the appropriate 

signal paths from Instrument ports to UUT pins. The actual control of the Switching 

Subsystem may be implemented by a specialized Switching Driver, which in turn may use 

SCPI commands sent over COM VISA to control the switches. 

 

4.3 Development Process 
 

Figure 5 exemplifies a software development process for the previously described ATS 

architecture. 
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Figure 5. Software Development Process for the ATS Architecture 



 

Commercial Off-The-Shelf (COTS) Integrated Development Environments (IDEs) such as 

Visual Basic or Visual C++ may be used for building TPSs and IVI Signal Components. A 

COTS editor may be used to edit the Resource Information file distributed along with the IVI 

Signal Component. 

 

In business model envisioned to evolve from the technical specification of the IVI Signal 

Interface [10], the IVI Signal Components are developed by solution providers and delivered to 

system integrators, which integrate them with TPSs and the ATE hardware. The standardization 

of the IVI Signal Interface supports the accurate specification and validation of IVI Signal 

Components by system integrators. 

5 CONCLUSIONS 

 

The ATLAS2K standard currently under development defines a set of COM components that 

model signals, as well as a way to interconnect these components in order to specify test 

requirements. The above components may be used to write signal-oriented TPSs in 

general-purpose languages such as C++ or Visual Basic.  

 

The IVI Signal Interface proposal envisions the standardization of COM interfaces for IVI-MSS 

components, providing a high degree of instrument interchangeability, along with the portability 

of components between test environments from different vendors. 

 

ATLAS2K and the proposed IVI Signal Interface address complementary areas of ATS 

architectures. The IVI Signal Interface may provide an implementation mechanism for 

ATLAS2K, while the ATLAS2K standard may provide the signal type information required for 

the IVI Signal Interface standard. 

 

The two standards, along with IVI-COM Drivers and COM VISA may define the foundation of a 

modular, open, distributed and coherent COM-based ATS architecture. This approach offers the 

following benefits: 

 based on up-to-date software technologies such as COM and general-purpose 

object-oriented languages 

 wide coverage, addressing four software interfaces defined for the ATS subdomain by the 

Department of Defense (DoD) Joint Technical Architecture (JTA) [14] 

 decouples test and diagnosis operations from instrument control, promoting code reuse 

 favors TPS portability among test execution environments from different vendors 

 provides a high degree of instrument interchangeability 
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