

ATLAS2K AND THE IVI SIGNAL INTERFACE - THE FRAMEWORK FOR
AN OPEN, MODULAR AND DISTRIBUTED ATS ARCHITECTURE

Dr. Ion A. Neag, TYX Corporation, (703) 264-1080, ion@tyx.com

Narayanan Ramachandran, TYX Corporation, (703) 264-1080, nr@tyx.com

ABSTRACT

This paper investigates the combined use of ATLAS2K and the IVI Signal

Interface in ATS architectures. The analysis of these initiatives identifies a set of

common features and demonstrates that they address complementary areas of

ATS architectures. This situation makes them an excellent fit for establishing the

foundation of a modular, open, distributed and coherent COM-based ATS

architecture.

Keywords: automatic test system, ATLAS, ATLAS2K, Interchangeable Virtual

Instruments, IVI, signal, signal interface

1 INTRODUCTION

The analysis of software technologies used in PC-based Automatic Test Systems (ATSs)

demonstrates a gradual evolution from the procedural programming paradigm, relying on C-type

languages and Windows Dynamic Link Library (DLL) technology, to the object-oriented

paradigm that builds on object-oriented languages and the Component Object Model (COM)

technology. This trend is visible, for example, in the work of the IVI Foundation [1], where C

interfaces for instrument drivers, targeted towards the current user base, are complemented by

COM interfaces, supporting the development of new projects in object-oriented environments

[2].

An essential feature of the object-oriented paradigm is its ability to support the implementation

of computer-based solutions for very complex problems. Consequently, object and component

libraries have emerged as modern alternatives in application fields where domain-specific

languages were previously the preferred approach. Such libraries may be used in conjunction

with general-purpose programming languages, which are supported by high-quality development

tools and offer better availability of programming expertise than specialized languages. IVI

Drivers [3] provide an excellent example for the above trend, since their functionality and

benefits (i.e., perform instrument control while supporting instrument interchangeability) are

very similar to those of the SCPI language.

The ATLAS2K standard [4] defines a COM library oriented towards signal-based testing. Thus,

it is a perfect illustration of both trends described above.

Recognizing that IVI drivers alone do not provide complete interchangeability for instruments,

the IVI Foundation develops the IVI Measurement and Stimulus Subsystems (IVI-MSS) standard

mailto:ion@tyx.com
mailto:nr@tyx.com

[5], which defines an enhanced architecture where additional layers of COM components

compensate for differences in instrument behavior and support the aggregation of multiple

instruments [6] [7].

A recent initiative in the IVI Foundation, the IVI Signal Interface [8], aims to support the

signal-oriented control of instruments while providing a high degree of instrument

interchangeability [9] [10]. This goal may be achieved by standardizing a set of interfaces for

IVI-MSS components, interfaces that support signal-oriented operations such as Reset, Setup and

Fetch.

2 ATLAS2K

2.1 Overview

ATLAS2K is a new standard under development by the Test Description (TD) Sub-Committee

of the IEEE Standards Coordinating Committee 20 on Test and Diagnosis for Electronic Systems

(SCC20) [11].

This standard represents a significant departure from previous ATLAS specifications, which

define a high-order test requirement-oriented language. Instead, ATLAS2K defines a set of COM

components that model signals, as well as a way to interconnect these components in order to

specify test requirements. The above components may be used from “carrier languages” that

satisfy a set of minimal requirements defined in the standard [11], with C++, Visual Basic and

Java being among candidates.

The definition of ATLAS2K components includes the specification of syntax, through an

Interface Definition Language (IDL), and of semantics, using the Signal and Method Modeling

Language (SMML) [12].

Extensibility, a weak point of previous ATLAS specifications, is addressed in the new standard

by defining a set of primitive signals (“ATLAS2K Basic Components”) and supporting the

definition of new signals through composition operations [11]. Compatibility with previous

ATLAS standards is supported in ATLAS2K by defining a component library implementing

signals that correspond to ATLAS NOUNs defined by previous standards [13].

2.2 ATLAS2K Signal Components

2.2.1 Base Classes

ATLAS2K defines a set of base classes that model:

 signal roles:

o Source

o Sensor

o Signal Conditioner (implementing signal transformation and combination)

o Event Conditioners: time-based event, event-based event, signal-based event

In Signal

name
Out Signal

Sync Event

Attributes

Value

Figure 1. SignalFunction Class

 Unit Under Test (UUT) pins

 values of physical quantities

The fundamental base class, named SignalFunction, models a generic signal role. A symbolic

representation of this class is shown in Figure 1.

The default interface of the SignalFunction class contains the following properties:

 In: reference to a Signal interface belonging to another object

 Sync: reference to an Event interface belonging to another object

 Out: reference to a Signal interface belonging to the current object; a reference to the Out

interface may be assigned to an In or Sync property of another object (see Figure 2 below

for an example)

 Attributes: model the controllable parameters of the signal, such as the amplitude and

frequency of a sinusoidal voltage

 Value: models the value of the measurement; exists only for the “sensor” role

Signal and Event are specializations of a base interface named SignalFlow, which contains the

following elements:

 properties:

o State: returns the current state of the object; the following states are defined:

“Stopped”; “Paused” and “Running”; the current state is changed by the methods

specified below and possibly by events the object receives

 methods:

o Stop

o Run

o Change

The SignalFunction class provides SignalEvent callback interfaces, which support the

transmission of events indicating state changes. Such events may be received from objects

connected at In and Sync inputs and may be sent to objects connected to the Out output. For

Modulation

AM MOD

Carrier

Voltage Frequency

Voltage Frequency

ModIndex

Figure 2. Modeling a Composite Signal

instance, a Ready event indicates that signal state has changed from “Stopped” to “Paused”,

while an Active event signals a state change from “Paused” to “Running”.

The semantics of SignalFlow methods are signal role-specific; for example, the following

actions are performed by the Run method of a source signal object:

 call Run on all input signals

 acquire resources

 prepare signal for generation

 generate a Ready event

 enter “Paused” state

 if the signal is not externally synchronized, also perform the following tasks:

o activate the physical signal

o generate an Active event

o enter “Running” state

Actions are also triggered by events received from objects connected to In and Sync inputs. For

example, an Active event received from the Sync input is used for external synchronization. For a

sensor signal in “Paused” state, it triggers a measurement operation.

Composite signals may be modeled by interconnecting multiple SignalFunction objects through

their interfaces. For example, the generation of an AM signal by combining two sinusoidal

signals is modeled by the object structure represented in Figure 2.

The operation of multiple objects is synchronized through automatic method calls and events.

For example, when a client application calls the Run method of the AmMod object, this object

calls the same method on Modulation and Carrier. When the state of the Carrier object

changes (for example due to hardware triggering), it informs the AmMod object by sending an

event.

Specializations of the SignalFunction class are defined for particular signal roles such as source,

sensor, different types of event conditioners, etc. These derived classes have slightly different

interfaces (for example, the Source class does not have an In property).

2.2.2 Basic Components

The ATLAS2K Basic Components are further specializations of the role-specific classes

described above. For example, the SinusoidVoltage component, which models a sinusoidal

voltage, is a specialization of Source. In addition to the properties of Source, the default

interface of SinusoidVoltage contains the following properties that model signal parameters:

 Amp, of type <Voltage>

 Freq, of type <Frequency>

 Phase_angle, of type <PlaneAngle>

ATLAS2K defines such basic components for the following types of signals:

 source signals:

o non-periodic: constant, single ramp, step, stepped pulse train, trapezoid,

trapezoidal pulse train, exponential, damped sinusoid, random, noise

o periodic: square wave, periodic pulse train, ramp, triangular, trapezoidal, periodic

trapezoidal train, sinusoid, arbitrary waveform

 sensor signals: instantaneous, peak-to-peak, RMS, average, sampling, time interval

 signal conditioners: delay, sum, product, inverse, exponential, filters, Fourier transform,

etc.

 parallel digital signals

 serial data buses: RS, ARINC 429 and 629, MIL-STD-1553B, CSDB

2.2.3 TTF Components

Complex signals may be described using basic signals and the signal composition methodology

previously described. Such complex signals are grouped in libraries named “Test Technology

Frameworks” (TTFs). TTF components may be defined using ATLAS2K Basic Components, as

well as components from other TTFs.

Domain-specific TTFs are expected to be developed for applications such as RF testing, video

testing, etc.

In addition, the ATLAS2K standard will include a TTF that describes signals defined in IEEE

Std. 716 (C/ATLAS) in terms of ATLAS2K models. This approach is intended to provide

backwards compatibility for existing ATLAS Test Program Sets (TPSs).

2.3 Examples

The following Visual Basic code exemplifies typical sequences of signal operations [1]. The

equivalent ATLAS statements are provided as comments.

2.3.1 Signal Generation

The following code applies a sinusoidal voltage with an amplitude of 0.5 V and a frequency of

1 MHz to UUT pins “PL1-1” and “PL1-2”.

‘ SETUP SinusoidalVoltage Amp 0.5V, Freq 10MHz AS mySig

Dim mySig As Source

Set mySig = A2k.Require(”SinusoidalVoltage”)

mySig.Amp.Units = V

mySig.Amp = 0.5

mySig.Freq = ”1MHz” ’alternative string format

‘ CONNECT mySig CNX HI ”PL1-1” LO ”PL1-2”

Set cnx = A2k.Require(”TwoWire”)

cnx.HI = ”PL1-1”

cnx.LO = ”PL1-2”

Set cnx.in = MySig.out

Set cnx = Nothing

mySig.out.Run ’generate physical signal

‘ DISCONNECT mySig

mySig.out.Stop ’stop signal generation

mySig.in = Nothing

mySig = Nothing

2.3.2 Signal Measurement

The following code measures the RMS amplitude of an AC voltage with a nominal amplitude of

0.5 V at UUT pins “PL1-1” and “PL1-2”.

‘ SETUP RMSVoltage Nominal 0.5V AS mySig

Dim mySig As MeasurementFunction

Set mySig = A2k.Require(”RMSVoltage”)

mySig.Nominal.Units = V

mySig.Nominal = 0.5

‘ CONNECT (mySig) CNX HI ”PL1-1” LO ”PL1-2”

Set cnx = A2k.Require(”TwoWire”)

cnx.HI = ”PL1-1”

cnx.LO = ”PL1-2”

Set mySig.in = cnx.out

Set cnx = Nothing

‘ ARM (mySig)

mySig.out.Run ’perform measurement

‘ FETCH (mySig) INTO rmsValue

rmsValue = mySig.Value

‘ DISCONNECT (mySig)

Set disconnect = mySig.in

disconnect.out.Stop

Set disconnect = Nothing

Set mySig.in = Nothing

2.4 Implementation Issues

ATLAS2K components with identical interfaces may be required to implement different

functionality on different systems. The draft of the ATLAS2K standard mentions components

operating differently in design, simulation and run-time modes. Besides these situations,

ATLAS2K components should be able to use different instruments or different combinations of

instruments, in order to perform identical signal generation and measurement tasks on different

Automatic Test Equipment (ATE) setups. The above requirements are not directly addressed by

the standard, being considered implementation issues [3].

In order to preserve TPS portability, changing instruments or the operational mode of the

ATLAS2K components should not involve changes in the TPS code. Consequently, the ATS

architecture must support the mapping of signal objects used in the TPS to different objects

implementing instrument control (or simulation).

The above requirement has a very important consequence: to support instrument interchangea-

bility, ATLAS2K-based ATS architectures should contain two component layers. The first layer

includes the components defined by ATLAS2K, directly interconnected in the TPS code. Their

implementation delegates functionality to components on the second layer, which perform the

actual control of instruments (or implement simulation). Because the components on the second

layer are instrument-specific, their mapping to components from the first layer is actually a

resource allocation function.

Note: A very similar situation occurs for IVI drivers. To support instrument interchangeability,

test programs must use generic “class drivers”, which delegate functionality to “specific drivers”.

These components are instrument-specific and perform the actual control of instruments. The

above mapping is manually specified by the user and recorded in the “IVI Configuration Store”

[4].

Note: Another critical implementation issue for ATLAS2K is switching, i.e., the automatic

control of the switching system in order to close the appropriate signal paths from instrument

ports to UUT pins. Because switching is not directly related to the IVI Signal Interface, it will

not be discussed in the present paper.

3 THE IVI SIGNAL INTERFACE

3.1 Overview

The IVI Signal Interface proposal [9] [10] envisions the standardization of interfaces for a set of

COM components performing signal-oriented instrument control.

The use of the signal abstraction provides a high degree of instrument interchangeability, while

the standardization of interfaces would support the portability of components between test

environments from different vendors.

3.2 Architecture

The architecture proposed for the IVI Signal Interface standard is shown in Figure 3.

The IVI Signal Component is an IVI-MSS role component with a standardized application

interface (the IVI Signal Interface). This interface contains methods that implement a set of

basic signal operations such as Reset, Setup, Change, Fetch, etc. It allows the client application

to control the generation and/or measurement of a physical signal that may belong to one or more

signal types (e.g., DC current, AC voltage, etc.).

Instrument

IVI Driver,

VXIp&p,

VISA, ...

IVI Signal

Component

Client

Application

IVI Common

Components

IVI Signal

Interface

Resource

Information

IVI modules

Other software

Hardware

Figure 3. IVI Signal Interface Architecture

An IVI Signal Component controls one or more instruments that perform the generation or

measurement of the physical signal. Instrument control may be implemented through IVI

Drivers, VXIplug&play drivers, SCPI commands or some other mechanism. IVI Signal

Components use services provided by IVI Common Components such as IVI Factory, IVI

Configuration Store and IVI Event Server. This allows them to operate consistently and interact

with other IVI components such as IVI Drivers and IVI-MSS Servers.

IVI Signal Components provide programmatic access to Resource Information, a data module

that describes the signal generation and measurement capabilities of the component, including

the following information:

 supported signal types

 for each signal type, the supported signal parameters

 for each signal parameter, the range, resolution and precision that may be achieved in

generation or measurement

 connectivity of signal ports to instrument ports
The above information supports the automatic allocation of resources in signal-based ATSs.

IVI Signal Components may be used in different types of ATS architectures, as follows:

In signal-based ATSs, along with a general-purpose language and a component library (such as

those defined in ATLAS2K). This architecture is described in detail in Section 4.

In signal-based ATSs, along with the ATLAS language. In this approach, the object code

generated by an ATLAS compiler may contain calls to IVI Signal Components, which

implement the actual control of instruments.

In instrument-based ATSs, along with a general-purpose language. Although such a solution

does not implement automatic resource allocation or automatic switching, it can still benefit from

the higher level of abstraction provided by the IVI Signal Interface. For example, test programs

that use IVI Signal Components would feature a higher degree of instrument interchangeability

compared to VXIplug&play drivers or IVI drivers, supporting the replacement of an obsolete

instrument with an instrument from a different class or even with multiple instruments that

operate together to generate or measure a given signal.

3.3 Standardization of Signal Type Information

In the approach proposed in [10], the IVI Signal Interface allows the transmission of signal

information (such as signal type and signal parameters) in a generic, signal-type independent

format (see Section 3.4 for examples). Thus, an IVI Signal Interface standard would specify the

semantics of the information channel that links IVI Signal Components to their clients. For

example, the standard may define a Setup method that takes as arguments:

 the role of the signal (e.g., source, sensor or load)

 the type of the signal (e.g., AC Signal)

 a collection of objects of type Parameter, where each Parameter has the properties Name

and Value (e.g., Amplitude, 1.0 V).

Specifying the semantics of the information transferred through the channel implies the

standardization of signal type information, including the following elements:

 a set of signal types and their correspondence to physical signals

 for each signal type, the set of signal parameters and their correspondence to the

parameters of the physical signal

The standardization of signal type information is critical for instrument interchangeability, since

it guarantees the consistent use of such information by IVI Signal Components from different

vendors, as well as their client applications. It is the authors’ opinion that the IVI Signal Interface

standard should not specify its own signal types, but rather reference such information in an

existing standard. The following arguments support this approach:

 signal types are already defined in existing ATLAS specifications; their adaptation for an

interface standard is for the most part a mechanical process

 new signal types are being defined in the ATLAS2K initiative; compared to previous

ATLAS specifications, the new definitions will have a precise formal definition

 being focused on defining interfaces for instrument control, the IVI Foundation is not the

proper place to trigger another effort for defining signal types

3.4 Examples

The following Visual Basic code exemplifies the use of IVI Signal Components to implement

typical sequences of signal operations.

Note: The sample code below would appear as shown only in instrument-based TPSs. In

signal-based systems, the operations would be implemented in a component library such as

ATLAS2K or in the object code generated by an ATLAS compiler (see Section 3.2).

3.4.1 Signal Generation

The following code generates a sinusoidal voltage with an amplitude of 0.5 V and a frequency of

1 MHz with 1.0 Hz resolution, using the instrument with GPIB address 1.

‘ initalize

Dim mySigSource as IviSignalSource

mySigSource.Init(”GPIB:1:INSTR”)

‘ set signal parameters and start generation

Dim control As ParamValSet

control.Add(”Amp”, 0.5) ‘name and value

control.Add(”Freq”, 1.0E6, 1.0) ‘name, value and resolution

mySigSource.Setup(SENSOR, ”AcSignal”, control)

‘signal role, signal type and parameters

3.4.2 Signal Measurement
The following code measures the RMS amplitude of an AC voltage with a nominal amplitude of

0.5 V, using the instrument with GPIB address 2.

‘ initalize

Dim mySigSensor as IviSignalSensor

mySigSensor.Init(”GPIB:2:INSTR”)

‘ set signal parameters

Dim capability As ParamValSet

capability.Add(”Amp”, 0.5)

mySigSensor.Setup(SENSOR, ”AcSignal”, capability)

‘ start measurement

Dim measList As ParamSet

measList.Add(”RmsAmp”)

mySigSensor.Arm(measList)

‘ retrieve value

Dim measurements As ParamValSet

measurements = mySigSensor.Fetch()

Dim rmsValue as Double

rmsValue = measurements.GetValue(”RmsAmp”);

4 COMBINING ATLAS2K AND THE IVI SIGNAL INTERFACE IN AN ATS
ARCHITECTURE

4.1 Principle

As shown before, ATLAS2K and the proposed IVI Signal Interface standard address

complementary areas of ATS architectures, as follows:

 ATLAS2K components:

o are designed for direct use in signal-based TPS code

o as shown in Section 2.4, should not implement instrument control directly;

instead, they should delegate functionality to another layer of components

o the ATLAS2K standard defines signal types

 IVI Signal Components

o not intended for direct use in signal-based TPS code

o implement instrument control

o in authors’ oppinion, an IVI Signal Interface standard should not define signal

type information but rather reference such information in other standards

Consequently, the IVI Signal Interface may provide an implementation mechanism for

ATLAS2K, while ATLAS2K defines the signal type information required by an IVI Signal

Interface standard.

On the other hand, because both standards specify interfaces for COM components, they may

define the framework of a coherent COM-based ATS architecture, which may include other

COM standards under development, namely IVI-COM Drivers [4] and COM VISA [14].

4.2 Example
A signal-based ATS architecture that uses ATLAS2K and IVI Signal Components is shown in

Figure 4.

The Device Information module provides a description of capabilities for all the instruments

available on the system. For example, this module may be a file generated by the ATLAS2K

development environment. When a new instrument is installed on the system, the Resource

Information provided by the IVI Signal Component (see Figure 3) is included in the Device

Information file. The Switch Information module describes the connectivity of the Switching

Subsystem, while the Fixture Information module describes the connectivity of the Fixture.

The ATLAS2K TPS code requests each signal object from the Run-Time System. This component

compares the requirements specified for the signal with the capabilities of the instruments

available on the system, in terms of supported signal type and parameters, as well as range,

resolution and precision of these parameters. If an instrument with sufficient capabilities is

found, the Run-Time System uses data from the Switch Information and Fixture Information

Instrument
Switchig

Subsystem
UUT

IVI-COM

Driver

IVI Signal

Component

Switching

Driver

Run-Time

System

Device

Information

Fixture

Information

Switch

Information

ATLAS2K

TPS

R
e

c
e

iv
e

r

F
ix

tu
re

ATLAS2K

Component

COM

VISA

IVI modules

A2K modules

Other software

Hardware

Figure 4. ATS Architecture Using ATLAS2K and IVI Components

modules to verify if signal paths can be closed from Instrument ports to the appropriate UUT

pins. If this condition is also fulfilled, the Run-Time System instantiates the IVI Signal

Component corresponding to the allocated instrument, instantiates the ATLAS2K Component

for the required signal, initializes the ATLAS2K Component by passing it a reference to the

IVI Signal Component, then returns to the ATLAS2K TPS code a reference to the ATLAS2K

Component.

The ATLAS2K TPS code sets properties and invokes methods of the ATLAS2K Component.

This component calls the appropriate methods of the IVI Signal Component, which performs

the actual control of the instrument, possibly using an IVI-COM Driver. During TPS operation

the Run-Time System performs automatic switching by closing and opening the appropriate

signal paths from Instrument ports to UUT pins. The actual control of the Switching

Subsystem may be implemented by a specialized Switching Driver, which in turn may use

SCPI commands sent over COM VISA to control the switches.

4.3 Development Process

Figure 5 exemplifies a software development process for the previously described ATS

architecture.

ATLAS2K

TPS

Executable

ATLAS2K

TPS Source

COTS

IDE

(Visual Basic)

ATLAS2K

Component

Library

COTS

IDE

(C++)

IVI Signal

Component

Source

IVI Signal

Component

IVI-SC

Resource

Information
Editor

Run-Time

System

Device

Information

IVI modules

A2K modules

Other software

ATLAS2K

Component

Figure 5. Software Development Process for the ATS Architecture

Commercial Off-The-Shelf (COTS) Integrated Development Environments (IDEs) such as

Visual Basic or Visual C++ may be used for building TPSs and IVI Signal Components. A

COTS editor may be used to edit the Resource Information file distributed along with the IVI

Signal Component.

In business model envisioned to evolve from the technical specification of the IVI Signal

Interface [10], the IVI Signal Components are developed by solution providers and delivered to

system integrators, which integrate them with TPSs and the ATE hardware. The standardization

of the IVI Signal Interface supports the accurate specification and validation of IVI Signal

Components by system integrators.

5 CONCLUSIONS

The ATLAS2K standard currently under development defines a set of COM components that

model signals, as well as a way to interconnect these components in order to specify test

requirements. The above components may be used to write signal-oriented TPSs in

general-purpose languages such as C++ or Visual Basic.

The IVI Signal Interface proposal envisions the standardization of COM interfaces for IVI-MSS

components, providing a high degree of instrument interchangeability, along with the portability

of components between test environments from different vendors.

ATLAS2K and the proposed IVI Signal Interface address complementary areas of ATS

architectures. The IVI Signal Interface may provide an implementation mechanism for

ATLAS2K, while the ATLAS2K standard may provide the signal type information required for

the IVI Signal Interface standard.

The two standards, along with IVI-COM Drivers and COM VISA may define the foundation of a

modular, open, distributed and coherent COM-based ATS architecture. This approach offers the

following benefits:

 based on up-to-date software technologies such as COM and general-purpose

object-oriented languages

 wide coverage, addressing four software interfaces defined for the ATS subdomain by the

Department of Defense (DoD) Joint Technical Architecture (JTA) [14]

 decouples test and diagnosis operations from instrument control, promoting code reuse

 favors TPS portability among test execution environments from different vendors

 provides a high degree of instrument interchangeability

6 REFERENCES

[1] IVI Foundation web site, http://www.ivifoundation.org

[2] Fertitta, K.G., Harvey, J.M., The Role of ActiveX and COM in ATE, Proc. AUTOTESTCON

1999, San Antonio, TX, pp. 35 - 51

http://www.ivifoundation.org/

[3] ***, ATLAS2K specifications, Draft E1, April 2001

[4] ***, IVI-3.1: IVI Driver Architecture Specification, IVI Foundation, Rev. 0.91, March 2001

[5] ***, IVI-3.10: Measurement and Stimulus Subsystems (IVI-MSS) Specification, IVI

Foundation, Draft Rev. 0.4, February 2001

[6] Oblad, R., “Applying New Software Technologies to Solve Key System Integration Issues”,

Proc. AUTOTESTCON, Piscataway, NJ, 1997, pp. 181-189

[7] Oblad, R., “Achieving Robust Interchangeability of Test Assets in ATE Systems”, Proc.

AUTOTESTCON, San Antonio, TX, 1999, pp. 687-698

[8] ***, IVI Signal Interface, Functional Specification, Rev. 0.3, IVI Foundation, October 2000

[9] ***, The Role of the IVI Signal Interface Standard in Supporting Instrument

Interchangeability, White Paper, IVI Foundation, April 2000

[10] Ramachandran, N., Oblad, R.P., Neag, I.A., Tyler, D.F., The Role of the IVI Signal Interface

Standard in Supporting Instrument Interchangeability, Proc. AUTOTESTCON 2000, Anaheim,

CA

[11] IEEE Test Description Sub-Committee web page,

http://grouper.ieee.org/groups/scc20/td/index.html

[12] ***, Signal and Method Modeling Language, Issue C (Draft), August 2000

[13] ***, Standard Test Language for All Systems - Common/Abbreviated Test Language for All

Systems (C/ATLAS), IEEE, 1995

[14] ***, VPP-4.3.4: VISA Implementation Specification for COM, VXIplug&play Systems

Alliance, Revision 1.0, April 2000

[15] ***, Department of Defense Joint Technical Architecture, Version 4.0, April 2001

http://grouper.ieee.org/groups/scc20/td/index.html

