
A UNIFIED INTERFACE FOR SIGNAL-ORIENTED CONTROL OF
INSTRUMENTS AND SWITCHES

Stefan Gal, TYX Corporation, (703) 264-1080, stefan@tyx.com

Ion A. Neag, TYX Corporation, (703) 264-1080, ion@tyx.com

ABSTRACT

The signal-based testing paradigm, which reduces the impact of instrument

obsolescence, is typically implemented via software architectures that encapsulate

instrument-specific code in signal drivers. The paper describes the design of a

signal driver interface and an extension of this design that enables the uniform

treatment of instruments and switches. The unified interface supports the control

of switches found inside instruments, and the modeling of signal transmission

capabilities of switches and signal paths. Its use has the potential to lower

software development costs by reducing the number of different interfaces in

Automatic Test Systems.

Keywords: Automatic Test System, ATS, obsolescence, interchangeability,

signal-based testing, IVI Foundation, signal interface

1 INTRODUCTION

In the signal-based testing paradigm, test procedures specify testing operations in terms of

signals to be applied and measured at the pins of the Unit Under Test (UUT). The Automatic

Test System (ATS) software that supports the execution of these test procedures is responsible

for mapping signals to instruments or instrument subsystems (“resource allocation”), as well as

for calculating the signal paths through the switching subsystem and controlling the appropriate

switches in order to open and close the signal paths (“automatic switching”).

The signal-based testing paradigm provides significant benefits for applications where long-term

instrument obsolescence is a serious concern, such as avionics, weapon systems, transportation

and nuclear power plants. Because the test procedure code does not contain instrument

commands or instrument driver calls and it does not reference instrument or switch ports

directly, this code is independent on the instrumentation used to execute it. When instruments

become obsolete, they can be replaced without changing the test procedure code or the fixture

hardware. This avoids software re-hosting and validation costs, leading to important savings over

the lifetime of the equipment under maintenance [1] [2].

Section 2 of the paper introduces two typical software architectures used for implementing the

signal-based testing paradigm, showing that both architectures make use of “signal drivers”, as a

means of encapsulating instrument-specific code. Section 3 focuses on the signal driver interface,

presenting a design developed by the authors and proposed for standardization in the IVI

mailto:stefan@tyx.com
mailto:ion@tyx.com

Foundation. The extension of the above design for switches and signal connections is described

in Section 4.

2 SIGNAL-ORIENTED CONTROL OF AUTOMATIC TEST SYSTEMS

Signal-based ATSs may be implemented using the ATLAS language or a general-purpose

programming language in conjunction with a software library [3]. Typical architectural solutions

for these implementations are described in the following sub-sections.

2.1 ATLAS-Based ATS

In the ATLAS-based ATS shown in Figure 1, Test Procedure Source Modules are processed

by an ATLAS Compiler, which generates a Test Procedure Object Module. The test

procedure source code specifies requirements for the signals that it uses, including the range,

resolution and precision of signal parameters, as well as the connectivity of signal ports to UUT

pins. For each signal, the Resource Allocator to identifies an available resource (i.e., instrument

or subsystem of an instrument) that satisfies the requirements, as well as the switching paths

necessary for connecting the signal. The Resource Allocator uses the description of instrument

capabilities and connectivity from the Device Information Store, switching subsystem

connectivity from the Switch Information Store, and fixture connectivity from the Fixture

Information Store, returning information about the allocated instruments and switches. This

information is embedded in the Test Procedure Object Module.

The Device Information Store contains a description of capabilities and connectivity for all

instruments and switches available on the system. The following information is typically present

for instruments:

 for each instrument, a list of supported signals

 for each signal:

o signal role (source, sensor, load, etc.)

o signal type (“DC Signal”, “AC Signal”, etc.)

o the list of supported signal parameters

o for each parameter:

 parameter role (controllable, measurable)

 range, resolution and/or precision

o connectivity of signal ports to instrument pins

The connectivity of the Switching Subsystem is described in the Switch Information Store and

the connectivity of the Fixture is described in the Fixture Information Store, possibly as lists

of signal paths.

The Test Procedure Object Module is executed under the control of a Run-Time System. In

response to signal operations specified in the test procedure, the Run-Time System delegates the

signal control functionality to the appropriate Signal Driver(s) and the switching functionality to

a Switching Driver.

Test Procedure

Object Module

Signal

Driver

Run-Time

System

ATLAS

Compiler

Test Procedure

Source Module

Device

Information

Store

Instrument
Switching

Subsystem

R
e
c
e
iv

e
r

F
ix

tu
re

UUT

Switching

Driver

Resource

Allocator

ATLAS ADE

ATS Module

TPS Module

Hardware

Switch

Information

Store

Fixture

Information

Store

Figure 1. Signal-Based ATS Using the ATLAS Language - Example

The Signal Drivers are instrument-specific software modules that expose signal control

functions such as Setup, Arm, Fetch, Reset, etc. The Switching Driver is typically a software

module specific to the switching subsystem, exposing signal path control functions, typically

Connect and Disconnect. Signal Drivers and the Switching Driver control the hardware via

SCPI commands, instrument driver calls or other instrument control mechanisms.

2.2 Signal-Based ATS Using a General-Purpose Programming Language

The ATS architecture shown in Figure 2 uses a commercial Application Development

Environment (ADE) to compile Test Procedure Source Modules developed in a

general-purpose programming language. The signal control operations are specified in the test

procedure code by using objects from a Signal Library. This library contains classes or

components for various signal roles and types, such as “Source_AC_Signal”,

“Sensor_DC_Signal”, etc.

The Test Procedure Object Module is executed under the control of a Run-Time Engine.

When a signal object is needed, the test procedure code calls a function of the Run-Time

Engine, passing a set of requirements for the signal. The Run-Time Engine requests the

Resource Allocator to identify an available resource that satisfies the above requirements, as

well as the switching paths necessary for connecting the signal. The Resource Allocator uses

the description of instrument, switch and fixture capabilities and connectivity from the Device

Information Store, the Switch Information Store and the Fixture Information Store.

Information about the allocated instruments and switches is passed back to the Run-Time

Engine, which returns a signal object to the test procedure code.

In response to signal operations specified in the test procedure, the signal objects delegate the

signal control functionality to the appropriate Signal Driver(s) and the switching functionality to

the Switching Driver.

Test Procedure

Object Module

Signal

Driver

Run-Time

Engine

ADE

Test Procedure

Source Module

Switch

Information

Store

Signal

Library

Instrument
Switching

Subsystem

R
e
c
e
iv

e
r

F
ix

tu
re

UUT

Switching

Driver

Resource

Allocator

ATS Module

TPS Module

Hardware

Device

Information

Store

Fixture

Information

Store

Figure 2. Signal-Based ATS Using a General-Purpose Programming Language - Example

3 THE IVI SIGNAL INTERFACE

The standardization of a signal driver interface enables the portability of such drivers between

the signal-based test environments of different vendors, cutting development costs for ATSs that

are required to support multiple test environments. Moreover, the portability of signal drivers is

expected to provide multiple customers for their developers, leading to higher initial quality and

better maintenance.

The IVI Foundation [4] has formed a working group that develops a standard for signal driver

interfaces [5]. One task of that group is to develop an interface design that supports the usage

scenarios identified in Section 2, while enabling the use of signal drivers from a multitude of test

environments and programming languages. The design issues relevant for the subject of the

present paper are briefly described in the following. The description does not cover specialized

topics such as signal synchronization or inter-dependent instrument capabilities. While the

working group currently considers both COM and C interfaces, the following description uses

for illustration purposes only the COM interface.

3.1.1 Interfaces for Signal Control and Signal Capability Description

The signal-based ATS architectures described in Section 2 include a generic data storage module

named Device Information Store, which contains the description of signal generation and

measurement capabilities for each instrument available on the system. On the other hand, both

architectures contain one signal driver for each controlled instrument.

In order to simplify the distribution, integration and maintenance of signal drivers, it is desirable

to pack the capability information specific to each instrument along with the signal driver

controlling that instrument. In this situation, the Device Information Store would contain, for

each instrument, a simple reference to the signal driver component (in the case of IVI Signal

Drivers, this information is present in the IVI Configuration Store). Resource allocators use the

reference to instantiate the signal driver component and retrieve capability information via its

software interface.

In principle, the capability information may be modeled using a specialized language or an

object model. The second approach is currently considered for the IVI-SI design, in order to

provide consistency across IVI components.

Figure 3 shows the top-level interfaces exposed by a COM IVI Signal Driver (IVI-SD).

IviSig

Driver

IIviSigDriver

IIviSigCapabilities

IviSig

Capabilities

IVI-SD Component

Figure 3. Top-Level Interfaces of an IVI Signal Driver

The IIviSigDriver interface is the default interface of the component and provides access to

the signal control functionality. A property of this interface returns a pointer to the

IIviSigCapabilities interface of an IviSigCapabilities component, which in

turns provides access to a hierarchy of COM components that model the capabilities of the

instrument.

3.1.2 Signal Control Interfaces

Numerous instruments are able to generate and/or measure simultaneously multiple signals. In

the IVI-SI design, the control of these signals is achieved via multiple IviSigSignal

components, belonging to the same IVI-SD. The interfaces of these components are accessible

via properties exposed by the IIviSigDriver interface, as shown in Figure 4. Because

different signal roles require different control functions, interfaces specialized for each role are

derived from IIviSigSignal. For example, the IIviSigSource interface contains the

methods Setup() and Reset(), while IIviSigSensor adds Arm() and Fetch().

IviSig

Driver

IIviSigDriver

IIviSigSignal

IviSig

Signal

IIviSigSignal

IviSig

Signal

IIviSigSignal

IIviSigSensorIIviSigSource

Figure 4. Signal Control Interfaces

3.1.3 Signal Capability Model

The IIviSigCapabilities interface introduced in Section 3.1.1 provides access to a

structure of objects, implemented as COM components, which describe the signal capabilities of

the instrument. A simplified representation of this structure is shown in Figure 5.

An instrument is represented by a Device object. This object contains a Subsystems

collection, where each Subsystem object represents a physical module of the instrument that is

exclusively used for generating or sensing a signal (i.e., once allocated to a signal, may not be

allocated to a concurrent signal). The Device object also contains a Resources collection,

where each Resource object represents the capability to generate, measure or monitor one

signal. The Resource object has properties that describe the signal role (source, sensor or

event monitor) and the signal type. It also contains a SubsystemRefs collection, where each

SubsystemRef object represents a reference to a device subsystem, indicating a physical

module of the instrument that is used for generating or sensing the signal modeled by the

Resource object.

Device

Resources

Resource

Parameters

Parameter

Capabilities

Capability

DevicePorts

DevicePort

ResourcePorts

ResourcePort

MappedTo

Subsystems

Subsystem

SubsystemRefs

SubsystemRef

Uses

Figure 5. Signal Capability Model (simplified)

Each Resource object contains a Parameters collection, where each Parameter object

represents the capabilities related to one parameter of the signal type specified for the resource

(for example, a signal of type “AC Signal” has the parameters “Voltage”, “Frequency”, DC

Offset”, etc.). The Parameter object has properties that describe the parameter role

(measurable, controllable) and its unit.

Each Parameter object contains a Capabilities collection, where each Capability

object represents an alternative set of capabilities for the given parameter. The Capability

object has properties for value, range, resolution and precision.

The Device object also contains a DevicePorts collection, where each DevicePort

object represents a port of the particular instrument model (with the mapping of instrument

model ports to the port of a particular instrument installed on the system being specified in the

IVI Configuration Store [6]). Each Resource object contains a ResourcePorts collection,

where each ResourcePort object represents a port of the signal type specified for the

resource (for example, a signal of type “AC Signal” has the ports “HI” and “LO”). A property of

the ResourcePort object, “MappedTo”, references the DevicePort object representing the

instrument model port where the signal port is mapped, when the signal is generated or sensed.

4 UNIFIED TREATMENT OF INSTRUMENTS AND SWITCHES IN THE IVI SIGNAL
INTERFACE

The generic ATS architectures introduced in Section 2 handle the control and modeling of

capabilities for the switching subsystem in separation from the control and modeling of

capabilities for instruments.

During the design of the IVI Signal Interface, the authors have discovered that both the control

interface and the capability model originally developed for instruments may be extended to

handle switching. This allows the use of IVI Signal Drivers for controlling the switching

subsystem and for providing a description of capabilities for the modules that compose this

subsystem. In this scenario, the lower part of the ATS block diagram introduced in Figure 1 may

be redrawn as shown in Figure 6. A similar transformation is possible for the block diagram

represented in Figure 2.

IVI Signal

Driver

Run-Time

System

Resource

Information

Store

Instrument

R
e
c
e
iv

e
r

F
ix

tu
re

UUT ATS Module

Hardware

Switch

Modules

Switching

Subsystem

Figure 6. Signal-Based ATS Using a Unified Control Interface (Partial Block Diagram)

The Resource Information Store contains references to the IVI Signal Drivers that control

instruments and switch modules. The drivers provide information regarding the capabilities and

connectivity of instruments and switches.

In the proposed approach, the modeling of capabilities for the switching subsystem may cover,

besides basic connectivity, signal transmission capabilities such as: maximum current, maximum

voltage, impedance and bandwidth.

Furthermore, the proposed model supports the control and modeling of capabilities for switches

that are sometimes present inside instruments. Because of this, the resource allocator can treat

the instrument switches and the switches of the switching subsystem in a uniform manner. In

other words, all the hardware of the test station is modeled as a mix of instruments, switches and

connections, which are no longer separated into subsystems.

4.1.1 Switch Control Interface

Because the functions required for controlling signal paths are different from those used for

controlling the generation and measurement of signals, a new interface, IIviSigSwitch,

must be defined. This interface contains the methods Connect(), used to connect one or more

signal paths, and Disconnect(), which disconnects one or more signal paths.

The IviSigSwitch components that expose this interface control switching module

subsystems, in the same way IviSigSignal components control instrument subsystems.

Consequently, the IviSigSwitch components are also accessed via the IIviSigDriver

interface (see Figure 4). Figure 7 shows a simple example, where the IVI-SD that controls a DC

power supply contains an IviSigSource component that controls the generation circuit and

an IviSigSwitch component that controls the switches connecting the generation circuit to

the instrument ports.

IIviSig

Driver

IviSig

Driver

IIviSig

Source

IviSig

Source

IviSig

Switch

IIviSigSwitch

Generation

Circuit

DC Power Supply

IVI-SD

Figure 7. Switch Control Interface - Example for a DC Power Supply

4.1.2 Switch Capability Model

The following design requirements have been identified for the extension of the capability model

described in Section 3.1.3 to switching:

1. support the description of signal connectivity and signal transmission capabilities

2. support the modeling of switches that belong to the switching subsystem and switches

inside instruments

3. support the modeling of hardwired signal connections inside instruments, in the

switching subsystem and in other hardware subsystems (for example in the fixture),

as well as between such subsystems

4.1.2.1 Modeling Signal Transmission Capabilities of Switches and Connections

The signal transmission capabilities of switches and connections may be used by resource

allocators when selecting an instrument for a particular signal. In such a usage scenario, the test

procedure code would specify, besides signal requirements, a set of requirements for the signal

paths used to connect the signal to the UUT pins.

To be usable by resource allocators, the capabilities of switches and connections must be

expressed in signal terms, i.e. they should be specified as values or ranges for some signal

parameters. The modeling approach used in the IVI-SI design defines signal parameters only in

the context of a signal type. The signal types that model generation and sensing capabilities (such

as “DC Signal” or “AC Signal”) are not usable for signal transmission capabilities, because a

switch or connector can carry a multitude of such signal types. Consequently, a set of specialized

signal types has to be defined. Several examples are shown below:

 “Electrical”, with parameters “Max Current”, “Max Voltage”, “Max Power”,

“Bandwidth”, “Impedance”, “Loss”, etc.

 “Fluid”, with parameters “Fluid Types”, “Max Pressure”, “Max Mass Flow”, “Max

Volume Flow”, etc.

 “Optical”

 “Microwave”, etc.

The object structure introduced in Figure 5 for instrument capabilities may be also used for

modeling the signal transmission capabilities of switches, as demonstrated below. The Device

object may be used models a switching module (typically, a hardware asset with a unique bus

address). Resource objects may be used to to model switches inside switching modules. This

requires the addition of a new signal role, “switch”. Parameter and Capability objects

may be used to describe the signal transmission capabilities of the switch, using the specialized

signal types introduced before.

4.1.2.2 Modeling the Connectivity of Switches

The object model developed in Section 3.1.3 will be extended for modeling the connectivity of

switches (i.e., the set of possible signal paths, along with concurrency information). Because

Resource objects model switches, each switch port is represented by a ResourcePort

object. A property of this object returns a pointer to the DevicePort object representing the

switch module port to which the switch port is connected.

In addition to the external connectivity of switches, the model must describe their internal

connectivity, i.e. the set of possible signal paths through the switch. Commonly used switch

topologies such a “multiplexer” and “matrix” may be identified using a specialized property of

the corresponding Resource object.

Exclusive reliance on a predefined set of switch topologies should be avoided, because it

compromises extensibility. Consequently, the model must be able to describe in a generic format

a set of possible paths between the switch ports. This description must identify the paths that are

concurrent (e.g. for ganged switches), as well as the paths that are exclusive (e.g. for

multiplexers). A design that achieves these objectives is described by the partial object diagram

shown in Figure 8.

Device

DevicePorts

DevicePort

Resources

Resource

Subsystems

Subsystem

PathGroups

PathGroup

Paths

Path

Uses

From

To

Uses

ResourcePorts

ResourcePort

MappedTo

SubsystemRefs

SubsystemRef

Figure 8. Signal Capability Model, Including Switch Capabilities (simplified)

Each Path object represents a path between two switch ports. These ports are indicated by two

properties of the Path object, “From” and “To”, which reference ResourcePorts objects.

Another property of the Path object, “Uses”, references a Subsystem object, indicating the

physical switch used by the path. A physical switch may be used at any given time by a single

switch path. This information is necessary for the automatic calculation of signal paths by

resource allocators. For example, in the case of a multiplexer all signal paths use the same 1-to-n

physical switch, while for a matrix each path uses a different row-column physical switch.

Paths within a switch that may exist only simultaneously (e.g. in the case of ganged switches) are

grouped in the same Paths collection below a PathGroup object. This information is also

necessary for the automatic calculation of signal paths. For example, in the case of a ganged

multiplexer all signal paths that exist for a given position of the 1-to-n switches belong to a path

group.

4.1.2.3 Modeling Signal Connections

The first paragraph of Section 4.1.2 identifies a set of requirements for modeling hardwired

signal connections. While the model designed for the IVI-SI meets all these requirements, the

description provided below will use, for illustration purposes, only signal connections inside

instruments.

As described in Section 3.1.3, DevicePort objects were introduced for modeling external

instrument ports. In the proposed extension, these object are also used for modeling the ports of

instrument subsystems, which are internal to the instrument. Such a subsystem is capable of

generating or sensing one or more signals, each of them represented by a Resource object. The

ResourcePort objects below the Resource object reference DevicePort objects,

indicating the mapping of signal ports to subsystem ports.

Additional Resource objects are used for representing connections between subsystem ports

and/or between subsystem ports and external instrument port. These objects have a special signal

role, “connection”. As indicated in Section 4.1.2.1, the signal transmission capabilities of

connections are modeled using Parameter and Capability objects below Resource. If

such a Resource object represents one connection, it has a single PathGroup object, which

in turn has a single Path object, whose properties “From” and “To” reference the

subsystem/instrument ports linked by the connection. One Resource object may represent

multiple connections, in which case its single PathGroup object has multiple Path objects

(one for each connection). This approach may be used for representing multiple connections that

have identical signal transmission capabilities.

For example, an object model for the DC Power supply represented in Figure 9 contains three

Resource objects representing the following hardware elements:

 Generation Circuit: role = source, signal type = “DC Signal”

 Switches: role = switch, signal type = “Electrical”

 Connections: role = connection, type = “Electrical”

Generation

Circuit

DC Power Supply

OUT_HI

OUT_LO

GEN_HI

GEN_LO

SW1_OUT

SW2_OUT

SW1_IN

SW2_IN

Resource 1 Resource 2 Resource 3

Figure 9. Switch Capability Model - Example for a DC Power Supply

5 CONCLUSION

The paper describes a signal-based driver interface design supporting the control and the

modeling of capabilities for both instruments and switches. The unified design provides the

following benefits:

1. enables the control and modeling of capabilities for switches inside instruments

2. enables the modeling of signal transmission capabilities such as maximum current,

impedance and bandwidth, for both switches and hardwired signal connections

3. simplifies the implementation of ATS software, by using a single control interface and a

single capability model for all hardware assets

4. reduces development costs for switching drivers, by avoiding the learning overhead

associated with different interfaces and different capability models

5. extends the benefits of standardization to drivers that control the switching subsystem

6 REFERENCES

[1] Oblad, R., “Achieving Robust Interchangeability of Test Assets in ATE Systems”,

Proc. AUTOTESTCON, San Antonio, TX, 1999, pp. 687-698

[2] Ramachandran, N., Oblad, R.P., Neag, I.A., Tyler, D.F., “The Role of the IVI

Signal Interface Standard in Supporting Instrument Interchangeability”, Proc.

AUTOTESTCON, Anaheim, CA, 2000

[3] Neag, Ion A., Ramachandran, N, “ATLAS2K and the IVI Signal Interface - the

Framework for an Open, Modular and Distributed ATS Architecture”, Proc.

AUTOTESTCON, Valley Forge, PA, 2001, pp. 23 - 37

[4] *** IVI Foundation Web Site, http://www.ivifoundation.org

[5] *** IVI Signal Interface Working Group, IVI Foundation,

http://www.ivifoundation.org/groups/Signal-Interfaces/default.htm

[6] *** IVI-3.5: Configuration Server Specification, Revision 1.0, IVI Foundation,

2002

http://www.ivifoundation.org/
http://www.ivifoundation.org/groups/Signal-Interfaces/default.htm

